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Block-angular structures and large-scale problems

Block-angular problems
Modelling tool

Multiperiod, multicommodity problems.

Stochastic problems (two-stage, multi-stage optimization).

Linking constraints.

Applications
Logistics

Telecommunications

Big-data.

Energy

Size
Very large-scale problems
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Block-angular structures and large-scale problems

IPMs successful for very large-scale problems...
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Block-angular structures and large-scale problems

... but some problems too-large for standard IPMs

Specialized vs standard IPMs
Standard IPMs (CPLEX, XPRESS, MOSEK...) rely on Cholesky
Specialized IPMs use PCG for systems of equations.
Preconditioners are instrumental for efficiency.

Some preconditioners in IPMs
Splitting preconditioners (Resende, Veiga 1993; Frangioni, Gentile
2004; Oliveira, Sorensen 2005; Bocanegra, Campos, Oliveira 2007)
Constraints preconditioners (Keller, Gould, Wathen 2000; Gondzio et
al. 2007; Gondzio 2012)
Partial Cholesky (Bellavia et al. 2013)
IPM converge even if systems solved approximately (Gondzio 2013)
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IPM for block-angular problems

Formulation of block-angular problems
For convex separable problems (fi convex separable)

min
k
∑
i=0

fi (x i )

subject to


N1
. . .

Nk
L1 . . . Lk I




x1

...
xk

x0

=


b1

...
bk

b0


0≤ x i ≤ ui i = 0, . . . ,k.

Particular cases
Linear: fi (x i ) = c i>x i

Quadratic: fi (x i ) = c i>x i + 1
2 x i>Qi x i , Qi diagonal

Approaches
Dantzig-Wolfe, cutting planes
But IPMs can also be used...
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IPM for block-angular problems

A path-following method
Convex optimization problem

(P)
min f (x)
s.to Ax = b [λ ]

0≤ x ≤ u [z ,w ]

Central path defined by perturbed KKT-µ system
A>λ + z−w −∇f (x) = 0

Ax = b
(XZe,SWe) = (µe,µe) µ ∈ R+

(z ,w)>0 (x ,s)>0 s = u−x

x0

x1

x2
x3 x4

x
2 *x

x
1

central path
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IPM for block-angular problems

The linear algebra of IPMs
Augmented system
PCG-based IPMs usually solve the augmented system:[

−Θ−1 A>
A 0

]

Normal equations
BlockIP solves normal equations

(AΘA>)∆λ = g

where
Θ = (ZX−1 + WS−1 + ∇

2f (x))−1

is a diagonal matrix if problem is separable.
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IPM for block-angular problems

Solving normal equations
Exploiting structure of A and Θ

A =


N1

. . .
Nk

L1 . . . Lk I

 Θ =


Θ1

. . .
Θk

Θ0



AΘA> =



N1Θ1N>1 N1Θ1L>1
. . .

...
Nk ΘkN>k Nk ΘkL>k

L1Θ1N>1 . . . Lk ΘkN>k Θ0 + ∑
k
i=1 Li Θi L>i


=

[
B C

C> D

]

The Schur complement[
B C

C> D

][
∆λ1
∆λ2

]
=

[
g1
g2

]
⇐⇒ (D−C>B−1C)∆λ2 = (g2−C>B−1g1)

B∆λ1 = (g1−C∆y2)

System with B solved by k Cholesky factorizations.
Schur complement S = D−C>B−1C with large fill-in: system solved by PCG.
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IPM for block-angular problems

The preconditioner

Based on P-regular splitting S = D− (C>B−1C) [SIOPT00,COAP07]
Spectral radius of D−1(C>B−1C)) satisfies ρ(D−1(C>B−1C))) < 1 and then

(D−C>B−1C)−1 =

(
∞

∑
i=0

(D−1(C>B−1C))i
)

D−1

Preconditioner M−1 obtained truncating the power series at term h
M−1 = D−1 if h = 0,
M−1 = (I + D−1(C>B−1C))D−1 if h = 1.

Quality of preconditioner depends on
ρ < 1: the farther from 1, the better the preconditioner.
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IPM for block-angular problems

Non-zero Hessians improve the preconditioner I

Proposition. Upper bound for ρ [MP11]
The spectral radius ρ of D−1(C>B−1C) is bounded by

ρ ≤ max
j∈{1,...,l}

γj(
rj
vj

)2
Θ0j + γj

< 1,

where r is the eigenvector of D−1(C>B−1C) associated to ρ; γj ,j = 1, . . . , l , and
V = [V1, . . . ,Vl ], are the eigenvalues and matrix of eigenvectors of ∑

k
i=1 Li ΘiLi

>,
and v = V>r .
If Li = I the bound has the simple and computable form:

ρ ≤ max
j∈{1,...,l}

∑
k
i=1 Θij

Θ0j + ∑
k
i=1 Θij

< 1.
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IPM for block-angular problems

Non-zero Hessians improve the preconditioner II
Proposition. PCG more efficient for quadratic or nonlinear problems
Under some mild conditions, the upper bound of ρ decreases for ∇2f (x)� 0.

Proposition. PCG extremely efficient if Hessian is large

lim
∇2fi (x)→+∞

i=1,...,k

ρ = 0

Example: solution of a large (10 million variables, 210000 constraints)
with quadratic objective function x>Qx , for different Q = β I

CPLEX-11 Specialized IPM
Instance β it. CPU it. PCG CPU f ∗

CTA-100-100-1000 0.01 7 29939 10 36 66 -2.6715e+08
CTA-100-100-1000 0.1 7 31328 9 40 61 -2.6715e+09
CTA-100-100-1000 1 8 33367 8 38 56 -2.6715e+10
CTA-100-100-1000 10 9 35220 7 37 51 -2.6715e+11
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IPM for block-angular problems

Quadratic regularizations improve the preconditioner
Standard barrier, proximal-point and quadratic regularization

B(x ,µ) , f (x) + µ (−∑
n
i=1 lnxi −∑

n
i=1 ln(ui −xi ))

BP(x ,µ) , f (x) + 1
2 (x − x̄)>QP(x − x̄) + µ (−∑

n
i=1 lnxi −∑

n
i=1 ln(ui −xi ))

BQ(x ,µ) , f (x) + µ
( 1

2 x>QRx−∑
n
i=1 lnxi −∑

n
i=1 ln(ui −xi )

)
Regularization only affects to Θ matrices

Θ = (ZX−1 + WS−1 + ∇
2f (x))−1 for B

Θ =( QP + ZX−1 + WS−1 + ∇
2f (x))−1 for BP

Θ =(µQR + ZX−1 + WS−1 + ∇
2f (x))−1 for BQ

µQR vanishes as we approach the solution, BQ being equivalent to B.

BQ thus preferred to BP .
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IPM for block-angular problems

Spectral radius ρ can be estimated from Ritz values

... but this was discussed in a previous talk ...
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The BlockIP solver
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The BlockIP solver

The BlockIP solver: some features

Efficient implementation of the IPM for block-angular problems.

For LO, QO, or CO problems.

Problems in standard or general form.

Uses Ng-Peyton Sparse Cholesky package (room for improvement).

Fully written in C++, about 14000 lines of code.

Many options: computation Ritz values, quadratic regularizations,...

Comes with different types of matrices: General, oriented and
non-oriented Network, Identity, Diagonal, [I I], [D1 D2].

I Easy addition of other types of matrices.

I Extension to Matrix-Free paradigm.
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The BlockIP solver

How to input a problem? 1. Callable library
The most efficient option

Example
...
// declare N (block constraints matrix) as a Matrix for BlockIP
MatrixBlockIP N;
// declare arc source and destination vectors
int *srcN, *dstN;
// N is created as network matrix
N.create network matrix(numArcs, numNodes, srcN, dstN);
// fill srcN and dstN; srcN and dstN allocated by create network matrix()
...
// declare L (linking constraints matrix) as a Matrix for BlockIP
MatrixBlockIP L;
// L is created as an identity matrix
L.create identity matrix(numArcs);

BlockIP bip; // declare BlockIP problem

double *cost, *qcost, *ub, *rhs;
// creation of BlockIP problem
bip.create problem(BlockIP::QUADRATIC, cost, qcost, NULL, NULL, ub, rhs,

numBlocks, true, &N, true, &L);
// fill cost, qcost, ub, rhs ...
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The BlockIP solver

How to input a problem? 2. Input file in BlockIP format
Efficient format: vectors and sparse matrices

Example

#typeobj 0=linear 1=quadratic 2=nonlinear
1
#number of blocks
2
#sameN 1=yes 0=no
1
#Matrix: first line m,n,nnz; next nnz lines i,j,a
3 5 7
1 1 1
1 2 1
1 3 1
2 1 -1
2 4 1
3 2 -1
3 5 1
...
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The BlockIP solver

How to input a problem? 3. Input file in Structured MPS

MPS extension for block-angular problems developed for BlockIP

Example

ROWS
E Block1:Cons1
...
E LinkCons1
...
COLUMNS
Block1:Var1 obj 1 Block1:Cons1 1
...
Slack1 LinkCons1 1
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The BlockIP solver

How to input a problem? 4. SML (Grothey et al. 2009)
AMPL extension for structured problems.
SML extended to separable nonlinear problems for BlockIP.

Example (multicommodity transportation problem)

block Prod{p in PROD}:
var Trans {ORIG, DEST} >= 0; # units to be shipped
minimize total cost:

sum {i in ORIG, j in DEST} cost[p,i,j] * Trans[i,j];
subject to Supply {i in ORIG}:

sum {j in DEST} Trans[i,j] = supply[p,i];
subject to Demand {j in DEST}:

sum {i in ORIG} Trans[i,j] = demand[p,j];
end block;
subject to Multi {i in ORIG, j in DEST}:

sum {p in PROD} Prod[p].Trans[i,j] <= limit[i,j];
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Some applications Statistical tabular data confidentiality problems

Minimum Distance Controlled Tabular Adjustment
Statistical table

Vector a ∈ Rn of n cells.
Satisfies constraints: Aa = b, la ≤ a ≤ ua.

Goal: to find cell perturbations x ∈ Rn such that
Minimizes ||x ||` for some distance `

Satisfies A(x + a) = b, la ≤ x + a ≤ ua⇐⇒ Ax = 0, l ≤ x ≤ u
Satisfies protection requirements: αi ≤ xi ≤ βi i ∈S ⊆ {1, . . . ,n},
0 6∈ [αi ,βi ].

Optimization problem
min

x
||x ||`

s. to Ax = 0
l ≤ x ≤ u
αi ≤ xi ≤ βi i ∈S
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Some applications Statistical tabular data confidentiality problems

Block-angular structure of 3D tables: cube/box of data

Example: Profession × County × Sex
A 2D table for each sex, plus a third table for totals
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Some applications Statistical tabular data confidentiality problems

Different problems for three distances
Linear Problem: ∇2f (x) = 0, twice the number of variables

‖x‖`1 =
n
∑
i=1
|xi |=

n
∑
i=1

(x+
i + x−i )

Quadratic Problem: ∇2f (x) = 2I

‖x‖2
`2 =

n
∑
i=1

x2
i

Nonlinear Problem: ∇2f (x)� 0

‖x‖`1 =
n
∑
i=1
|xi | ≈

n
∑
i=1

φδ (xi )

Pseudo-Huber function φδ approximates absolute value (Fountoulakis, Gondzio
2014):

φδ (xi ) =
√

δ 2 + x2
i −δ δ ≈ 0
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Some applications Statistical tabular data confidentiality problems

Plots of and |x | and φ for some δ
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Some applications Statistical tabular data confidentiality problems

Plots of φ , φ ′ and φ ′′ for δ = 0.01
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Some applications Statistical tabular data confidentiality problems

Results for `1

Dimensions BlockIP CPLEX 12.5
Instance constraints variables CPU CPU
25-25-25 1850 31875 4 1
25-25-50 3075 63125 12 2
25-50-25 3100 63750 19 2
25-50-50 4950 126250 61 10
50-25-25 3100 63750 28 1
50-25-50 4950 126250 1 7
50-50-25 4975 127500 33 9
50-50-50 7450 252500 16 41
100-100-100 29900 2010000 8 986
100-100-200 49800 4010000 25 2262
200-100-200 79800 8020000 49 8789
200-200-200 119800 16040000 144 64521
500-500-50 299950 25250000 424 19595
500-50-500 299500 25025000 227 17415
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Some applications Statistical tabular data confidentiality problems

Results for `2

Dimensions BlockIP CPLEX 12.5
Instance constraints variables CPU CPU
25-25-25 1850 16250 0.0 0.8
25-25-50 3075 31875 0.1 1.4
25-50-25 3100 32500 0.1 1.2
25-50-50 4950 63750 0.1 5.8
50-25-25 3100 32500 0.1 1.2
50-25-50 4950 63750 0.1 4.2
50-50-25 4975 65000 0.1 5.1
50-50-50 7450 127500 0.2 19
100-100-100 29900 1010000 3 874
100-100-200 49800 2010000 6 1802
200-100-200 79800 4020000 11 7319
200-200-200 119800 8040000 29 65467
500-500-50 299950 12750000 91 15437
500-50-500 299500 12525000 28 14784
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Some applications Statistical tabular data confidentiality problems

Results for pseudo-Huber in small instances

Pseudo-Huber more efficient since ∇2f � 0
Dimensions BlockIP BlockIP `1

Instance const. variables CPU PCG CPU PCG
25-25-25 1850 16250 1 3285 4 16475
25-25-50 3075 31875 2 2940 12 22430
25-50-25 3100 32500 2 2525 19 34863
25-50-50 4950 63750 5 4658 61 57641
50-25-25 3100 32500 2 2404 28 53667
50-25-50 4950 63750 4 4392 1 526
50-50-25 4975 65000 4 3298 33 28669
50-50-50 7450 127500 6 1831 16 5523

Other state-of-the-art convex solvers could not solve these instances.
Larger instances neither could be solved with BlockIP.
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Some applications Multi-period facility location problems
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Some applications Multi-period facility location problems

The multi-period facility location problem [WP-15]
Data: sets and parameters

T : Set of time periods in the planning horizon, k = |T |.
I: Set of candidate locations for facilities, n = |I|.
J: Set of customers, m = |J |.

f t
i : Cost for operating a facility at location i at period t.

ct
ij : Unitary transportation cost from facility i to customer j at period t.

ht
j : Unitary shortage cost at customer j at period t.

d t
j : Demand of customer j at period t.

qi : Capacity of a facility located at i .
pt : Maximum number of facilities operating at period t.

Variables
y t

i ∈ {0,1}: if 1 a facility is operating at i during period t; 0 otherwise. Design variables
x t

ij : Amount shipped from facility i to customer j at period t.
zt

j : Shortage of customer j at period t.
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Some applications Multi-period facility location problems

The multi-period facility location problem: formulation

Formulation

min ∑
t∈T

(
∑
i∈I

f t
i y t

i +∑
i∈I

∑
j∈J

ct
ij xij + ∑

j∈J
ht

j zt
j

)
,

subject to ∑
i∈I

x t
ij + zt

j = d t
j , t ∈ T , j ∈ J ,

∑
j∈J

x t
ij ≤ qi y t

i , t ∈ T , i ∈ I,

∑
i∈I

y t
i ≤ pt , t ∈ T ,

y t
i ≤ y t+1

i , t ∈ T \{k}, i ∈ I,
y t

i ∈ {0,1}, t ∈ T , i ∈ I,
x t

ij ≥ 0, t ∈ T , i ∈ I, j ∈ J
zt

j ≥ 0, t ∈ T , j ∈ J .
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Some applications Multi-period facility location problems

Equivalent formulation
Projection on y -space: master problem

min
y ∑

t∈T
∑
i∈I

f t
i y t

i + Q(y),

subject to∑
i∈I

y t
i ≤ pt , t ∈ T ,

y t
i ≤ y t+1

i , t ∈ T \{k}, i ∈ I,

y t
i ∈ {0,1}, t ∈ T , i ∈ I.

Subproblem Q(y)

Q(y) = min
x ∑

t∈T

(
∑
j∈J

∑
i∈I

ct
ij x

t
ij + ∑

j∈J
ht

j zt
j

)
,

subject to ∑
i∈I

x t
ij + zt

j = dt
j , t ∈ T , j ∈ J ,

∑
j∈J

x t
ij ≤ qi y t

i , t ∈ T , i ∈ I,

x t
ij ≥ 0, t ∈ T , i ∈ I, j ∈ J ,

zt
j ≥ 0, t ∈ T , j ∈ J .
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Some applications Multi-period facility location problems

Solution of equivalent formulation

Q(y) is convex (and piecewise linear if y was continuous).

Q(y) can thus be lower-approximated by cutting planes.

Cutting planes obtained by solving subproblem Q(y l ) at some point y l .

Generated cutting planes are iteratively added to the master problem.

This is basically: Benders decomposition.

Three properties of subproblem:
I Separable in k = |T | subproblems, one for time period.
I Each of the k subproblems has block-angular structure, BlockIP can be

used.
I No need to optimally solve each subproblem: inexact cuts. BlockIP can

thus be effectively used, avoiding last expensive IPM iterations with
PCG.
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Some applications Multi-period facility location problems

Solution of large-scale facility location instances
World-wide problems: 100s locations, 100000s of customers.

Optimality tolerance 10−5 for the subproblems.
BlockIP BarOpt

n m k const. bin.var. cont. var. iter. gap CPU iter. gap CPU
100 100000 1 100101 100 10100000 3 0.0000 25.39 3 0.0000 42.01
100 100000 2 200302 200 20200000 4 0.0000 63.36 4 0.0000 129.91
100 100000 3 300503 300 30300000 6 0.0000 166.86 6 0.0000 336.20
100 500000 1 500101 100 50500000 2 0.0003 552.66 2 0.0011 474.67
100 500000 2 1000302 200 101000000 3 0.0000 2534.44 3 0.0004 1391.85
100 500000 3 1500503 300 151500000 4 0.0071 5524.19 4 0.0004 3932.30
100 1000000 1 1000101 100 101000000 2 0.0001 1292.37 2 0.0002 1221.85
100 1000000 2 2000302 200 202000000 2 0.0002 3124.20 †

100 1000000 3 3000503 300 303000000 3 0.0000 11218.75 †

200 100000 1 100201 200 20100000 3 0.0000 25.45 3 0.0000 102.69
200 100000 2 200602 400 40200000 4 0.0000 63.59 4 0.0000 310.33
200 100000 3 301003 600 60300000 6 0.0000 167.76 6 0.0000 787.70
200 500000 1 500201 200 100500000 3 0.0000 1402.13 3 0.0000 1064.93
200 500000 2 1000602 400 201000000 5 0.0000 5814.12 ‡

200 500000 3 1501003 600 301500000 6 0.0000 8652.29 †

200 1000000 1 1000201 200 201000000 ∗ †

200 1000000 2 2000602 400 402000000 4 0.0001 14514.18 †

200 1000000 3 3001003 600 603000000 6 0.0001 40744.86 †

∗ Preconditioned conjugate gradient solver failed
† CPLEX ran out of memory (required more than 144 Gigabytes of RAM)
‡ Execution aborted
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Some applications Multi-period facility location problems

Solution of large-scale facility location instances
World-wide problems: 100s locations, 100000s of customers.

Optimality tolerance 10−3 for the subproblems.
BlockIP CPLEX

n m k const. bin.var. cont. var. iter. gap CPU iter. gap CPU
100 100000 1 100101 100 10100000 3 0.0010 17.35 3 0.0002 40.14
100 100000 2 200302 200 20200000 4 0.0007 32.04 4 0.0001 117.45
100 100000 3 300503 300 30300000 5 0.0009 63.31 6 0.0035 373.97
100 500000 1 500101 100 50500000 2 -0.0040 69.17 ∗

100 500000 2 1000302 200 101000000 3 0.0006 272.39 ∗

100 500000 3 1500503 300 151500000 5 0.0007 760.93 ∗

100 1000000 1 1000101 100 101000000 2 -0.0002 123.53 2 0.0008 655.72
100 1000000 2 2000302 200 202000000 2 -0.0010 312.23 †

100 1000000 3 3000503 300 303000000 3 0.0009 891.81 †

200 100000 1 100201 200 20100000 3 0.0010 17.39 3 0.0002 100.54
200 100000 2 200602 400 40200000 4 0.0007 32.09 4 0.0001 297.03
200 100000 3 301003 600 60300000 5 0.0009 63.55 6 0.0035 912.05
200 500000 1 500201 200 100500000 3 0.0010 110.02 3 0.0000 1146.60
200 500000 2 1000602 400 201000000 4 0.0010 309.68 ‡

200 500000 3 1501003 600 301500000 6 0.0010 868.43 †

200 1000000 1 1000201 200 201000000 3 0.0009 729.79 †

200 1000000 2 2000602 400 402000000 4 0.0010 1109.64 †

200 1000000 3 3001003 600 603000000 6 0.0009 3254.21 †

∗ Repeated solution in master, Benders would not converge
† CPLEX ran out of memory (required more than 144 Gigabytes of RAM)
‡ CPLEX aborted
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Generation of random networks with constraints [EJOR15]

Scope of application
Important application in the analysis of social networks and complex
systems.
The goal is to generate a sample of (hundreds, thousands of) graphs
with some particular properties solving some binary problems by
randomly modifying the cost vector.
Constraints matrices are totally unimodular for many problems.

A particular case: undirected edge-colored graphs
Generate a graph with different types of edges (different colors), and
given number of edges per color.
Extra constraints can be added, for instance the degree of the nodes,
etc.
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Some applications Generation of random networks

Formulation of edge-colored generation problem
Parameters and variables

n: number of nodes.
C : set of colors.
dc : number of edges per color c ∈ C .
Set of possible undirected edges: H = {(i , j) : 1≤ i ≤ n−1, i < j ≤ n}.
Decision variables: xij ∈ {0,1},(i , j) ∈H.

Optimization problem
min ∑

(i ,j)∈H
∑

c∈C
w c

ij xc
ij

∑
c∈C

xc
ij ≤ 1 (i , j) ∈H

∑
(i ,j)∈H

xc
ij = dc , c ∈ C

xc
ij ∈ {0,1} (i , j) ∈H,c ∈ C

The constraints of linear relaxation are TUM, so it can be solved as LP.
This and others random graph problem are shown to have a block-angular structure.
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Solution of some edge-colored network generation instances

Medium-size problems: up to 450 nodes and 450 colors.

CPU time and iterations (in parentheses) of three algorithms.

n C var. constr. Dual Simplex Barrier BlockIP
CPLEX 12.5 CPLEX 12.5

50 50 61250 100 0.7 (733) 0.2 (13) 0.2 (34)
150 50 558750 200 6.4 (934) 5.3 (26) 3.4 (43)
450 50 5051250 500 126.3 (2462) 90.8 (46) 45.7 (56)
50 150 183750 200 5.0 (1435) 0.9 (14) 0.9 (40)
150 150 1676250 300 58.3 (2503) 18.7 (30) 12.6 (52)
450 150 15153750 600 1175.5 (5243) 384.6 (53) 147.2 (58)
50 450 551250 500 5.2 (1956) 2.9 (15) 3.3 (45)
150 450 5028750 600 378.8 (4822) 64.9 (35) 37.7 (51)
450 450 45461250 900 10926.3 (13047) 1287.4 (52) 409.6 (54)
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Some applications Other applications

Other applications under consideration

Routing in telecommunications networks
Nonoriented multicommodity network.
Many OD pairs
Nonlinear Kleinrock delay function
Already implemented: good results. Work in progress.

Transportation assignment problem in urban networks
Similar to routing in telecommunications networks.
Many OD pairs
Nonlinear BPR (Bureau of Public Roads) function.
To be tested soon.
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Conclusions

Conclusions

IP solver for block-angular problems.

Shown to be very efficient for some applications.

Many future applications to be tried.

Available for research purposes from
www-eio.upc.edu/˜jcastro/BlockIP.html
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Thanks for your attention
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